We never reviewed the Corsair 460X, but now we are reviewing the Corsair iCUE 465X. It's good that we never reviewed the first case, because we’re thoroughly tired of trying to find new things to say about case revisions when we’ve just gotten through looking at the prior one. The 465X is a familiar design with a full-length PSU shroud and tempered glass side and front panels, but with open-air gaps on either side that so many case manufacturers seem afraid to commit to. Corsair's 465X is priced similarly to the NZXT H700 non-i, Cooler Master H500P Mesh, and Lian Li O11 Dynamic after fan purchases. Pricing is supposed to be in the $150-$160 range, with some impact assuredly from tariffs and the rest from the RGB LEDs, three fans, and cut-down Node internally.

Other than announcing our upcoming collaborative stream with overclocker Joe Stepongzi (Bearded Hardware), we're also talking Threadripper specification leaks, 6000MHz memory overclocking, RDNA 2 and Zen 3 roadmap information, and smaller items. For us, though, we're excited to announce that we're streaming some liquid nitrogen extreme overclocks with AMD parts this weekend. We haven't run both the 5700 XT and 3900X under liquid nitrogen at the same time, so we'll be doing that on Sunday (9/15) at 1PM Eastern Time (NYC time). On Saturday (9/14), we'll be streaming the efforts to overclock just the 3900X under liquid nitrogen. Joe Stepongzi, pro overclocker with a decade of experience in the 'sport,' will be joining us to help run the show.

We’ve reviewed an onslaught of cards from the RX 5700 series, including the RX 5700 and XT reference models, the Sapphire Pulse XT, MSI Evoke XT, and RX 5700 Red Dragon by PowerColor. Today, we’re looking at another non-XT model: The Sapphire RX 5700 Pulse is going head-to-head with the PowerColor RX 5700 Red Dragon, with the AMD Reference card tagging along to provide some much-needed perspective that, although there will only be one winner between these two AIB cards, both are a massive upgrade over AMD’s blower design.

As a reminder that’s hopefully unnecessary, the real difference from one board partner card to the next hinges upon thermals and acoustics, not necessarily gaming performance. There certainly can be a gaming performance impact, but this is typically limited to less than 2% change in performance from baseline for the RX 5700 series cards. AMD already maxed the silicon as much as it could and boosting isn’t as sensitive as NVIDIA cards; further still, the AMD RX 5700 non-XT model is artificially limited (without modifications, which are possible) to a SET frequency of 1850MHz (not necessarily GET). This, along with maxing the silicon, relegates most changes from cards to what we call “quality of life” features, like significantly reduced noise levels, PCB designs that might be more accommodating to one case or another, and reduced thermals. VBIOS power limitations are also at play, where VBIOS changes can allow cards to draw more power than reference, but won’t necessarily yield performance benefits as a result. Finally, another useful feature present on both the Sapphire and PowerColor models is dual VBIOS, which allows a backup if the user botches a flash.

We’re finally looking at a non-XT version of the RX 5700, and the first one we received is the PowerColor RX 5700 Red Dragon, which comes with dual-VBIOS to match its dual-axial cooler. The card is a proper 2-slot design with a more muted, less gamer-y aesthetic, but more importantly, it should serve as a competitive alternative to the reference model and its cursed blower fan. The RX 5700 Red Dragon is priced at $360, about $10 over MSRP for the 5700 reference card, and comes in about $50-$60 under the 5700 XT partner models that we’ve recommended so far. Today, we’re looking at thermals, acoustics, and some gaming performance for the Red Dragon.

As we dive into this, a few notes: Like the RX 5700 XT reviews we’ve posted (Sapphire Pulse, MSI Evoke, Gigabyte Gaming OC), this will focus most heavily on thermals and noise. Because it’s the first non-XT that we’re reviewing, we’ll also look briefly at gaming impact versus reference, alongside overclocking differences. For the most part, though, we already know where the silicon performs (and you can check our Pulse review for the most up-to-date full suite of data), and so we just need to see how the cooler changes things. That’ll primarily be in noise, noise-normalized thermals, ands tock thermals.

The Phanteks P400A gave us tentative hope at Computex when we saw its move to a fine mesh front panel, similar to what Cooler Master did with the NR600. The P400A follows-up on the original Eclipse P400, but while keeping the base tooling, it massively overhauls the panel design to move away from a closed-off, suffocated front and toward a more open mesh. Phanteks also avoids the trap that many fall into by eliminating a dust filter, instead relying on the fine mesh as a filter and keeping airflow as open as possible. In today’s testing, we’ll look at the Phanteks P400A RGB for thermals and acoustics, but we’ll also test the white panel versus black panel to see if the paint thickness matters, then throw the original P400 panel on for comparison.

The original Phanteks Eclipse P400 released circa 2016. The P400 is a case that launched during the initial explosion of S340-esque cases with sealed front panels, full-length PSU shrouds, and no optical drive support. Phanteks has gotten an impressive amount of use out of that tooling over the years, most recently with the case we’re reviewing today: the mesh-fronted P400A that comes as a $70 base model with two fans and a fan controller or a $90 RGB model with three fans and an LED controller. We’ll be covering the $70 model in a separate piece, since this review is already full to the brim with testing of the P400A’s front panel.

This hardware news episode mostly focuses on alleged Threadripper documentation that we received through a leak, including discussion of the sTRX4 and sWRX8 processors that are listed in said document. The "4" and "8" are indicative of memory channel count, though we don't fully know what name or release date AMD intends to give these CPUs. AMD's Threadripper 3000 series CPUs will be competing with Intel in HEDT, where Intel is presently focusing effort for its next major release cycle. Beyond the Threadripper discussion, we also talk about Intel and AMD bickering with each other like children (I'll turn this car around right now!), Der8auer's survey, USB4 spec, and the Steam Hardware Survey.

Show notes and sources continue below the video embed.

We’ve already reviewed the reference RX 5700 XT, the Sapphire Pulse model that we received as a frontrunner for board partners, and the MSI Evoke OC, which was overall poor value when compared to cheaper solutions on the market. Now, we’re looking at the Gigabyte Gaming OC card, the first triple-axial fan contender in our RX 5700 series benchmarks. It all comes down to thermals and noise with these, as gaming performance is functionally the same between each card when stock, and so we’ll focus-down on if Gigabyte can achieve competitive thermals at equivalent noise to the Sapphire and MSI cards. At $420 MSRP, the Gigabyte Gaming OC is priced around the Pulse and just below the Evoke.

For this testing, we’re focusing most heavily on thermals and noise. As a reminder, and we’ll say this in the conclusion as well, board partner cards ultimately come down to thermal and acoustic differences. There are a few that have extreme impact on XOC capabilities, like a KINGPIN or HOF card, but none of the 5700 XTs that we’ve yet looked at focus on that market. Gaming benchmarks become unimportant, as performance remains unchanged in nearly all partner designs. The one exception is the Evoke OC, which posted roughly a +2% performance advantage over baseline reference/Pulse performance, but otherwise, expect no meaningful or even measurable performance impact in gaming from these cards. The biggest gain is in massive quality of life improvements, such as reduced noise levels (in a noticeable way), reduced thermals, features like extra VBIOS on-board (the Pulse has this), or fitment advantages.

Memory speed on Ryzen has always been a hot subject, with AMD’s 1000 and 2000 series CPUs responding favorably to fast memory while at the same time having difficulty getting past 3200MHz in Gen1. The new Ryzen 3000 chips officially support memory speeds up to 3200MHz and can reliably run kits up to 3600MHz, with extreme overclocks up to 5100MHz. For most people, this type of clock isn’t achievable, but frequencies in the range of 3200 to 4000MHz are done relatively easily, but then looser timings become a concern. Today, we’re benchmarking various memory kits at XMP settings, with Ryzen memory DRAM calculator, and with manual override overclocking. We’ll look at the trade-off of higher frequencies versus tighter timings to help establish the best memory solutions for Ryzen.

One of the biggest points to remember during all of this -- and any other memory testing published by other outlets -- is that motherboard matters almost more than the memory kit itself. Motherboards are responsible for most of the timings auto configured on memory kits, even when using XMP, as XMP can only store so much data per kit. The rest, including unsurfaced timings that the user never sees, are done during memory training by the motherboard. Motherboard manufacturers maintain a QVL (Qualified Vendor List) of kits tested and approved on each board, and we strongly encourage system builders to check these lists rather than just buying a random kit of memory. Motherboard makers will even tune timings for some kits, so there’s potentially a lot of performance lost by using mismatched boards and memory.

This week's hardware news has a litigation theme, including battles between GlobalFoundries and TSMC and AMD and the public. In the former, it's a fight over intellectual property and alleged infringements; in the latter, it's been resolved, and buyers of the Bulldozer CPUs affected can lay claim to $35 (unless a lot of people claim it, in which case it'll dilute further). Beyond that, we'll be talking RX 5700 stock, sales numbers, and Intel's banter with AMD.

Show notes below the embedded video.

Lian Li O11 Dynamic XL Case Review & Benchmarks

By Published August 30, 2019 at 9:30 am

The O11 Dynamic was a case we liked enough to keep around for housing one of our work PCs. The layout is nonstandard, from the side intake vents to the placement of the PSU and storage, but it works. It may be the only case we’ve ever tested with a completely sealed-off glass front panel that still managed to perform actually well in testing. The O11 Air variant impressed us somewhat less, but improved substantially when the dust filtration was removed. Now, in 2019, Lian Li is introducing the O11 XL, a larger version of the original case, still bearing the Der8auer badge for his initial work on the O11 Dynamic. 

Like the Dynamic, this case is meant to be used for water cooling builds, but our standardized test bench is used for air testing. This is still useful to determine the performance capabilities of the case, as it’ll all scale when comparing one case to the next, but note that water cooling can obviously brute-force its way past a lot of thermal issues. Still, the O11 Dynamic made an actually good air-cooled case thanks to the bottom intake and side intake options, so even though it looks best as an aquarium, it didn’t have to be one.

Page 1 of 158

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge