CES posed the unique opportunity to speak with engineers at various board manufacturers and system integrators, allowing us to get first-hand information as to AMD’s plans for the X570 chipset launch. We already spoke of the basics of X570 in our initial AMD CES news coverage, primarily talking about the launch timing challenges and PCIe 4.0 considerations, but can now expand on our coverage with new information about the upcoming Ryzen 3000-series chipset for Zen2 architecture desktop CPUs.

Thus far, the information we have obtained regarding Ryzen 3000 points toward a likely June launch month, probably right around Computex, with multiple manufacturers confirming the target. AMD is officially stating “mid-year” launch, allowing some leniency for changes in scheduling, but either way, Ryzen 3000 will launch in about 5 months.

The biggest point of consideration for launch has been whether AMD wants to align its new CPUs with an X570 release, which is presently the bigger hold-up of the two. It seems likely that AMD would want to launch both X570 motherboards and Ryzen 3000 CPUs simultaneously, despite the fact that the new CPUs will work with existing motherboards provided they’ve received a BIOS update.

Today we’re reviewing the RTX 2060, with additional tests on if an RTX 2060 has enough performance to really run games with ray-tracing – basically Battlefield, at this point – on the TU106 GPU. We have a separate tear-down going live showing the even more insane cooler assembly of the RTX 2060, besting the previous complexity of the RTX 2080 Ti, but today’s focus will be on performance in gaming, thermals, RTX performance, power consumption, and acoustics of the Founders Edition cooler.

The RTX 2060 Founders Edition card is priced at $350 and, unlike previous FE launches in this generation, it is also the price floor. Cards will start at $350 – no more special FE pricing – and scale based upon partner cost. We will primarily be judging price-to-performance based upon the $350 point, so more expensive cards would need to be judged independently.

Our content outline for this RTX 2060 review looks like this:

  • Games: DX12, DX11
  • RTX in BF V
  • Thermals
  • Noise
  • Power

We’re putting more effort into the written conclusion for this one than typically, so be sure to check that as well. Note that we have a separate video upload on the YouTube channel for a tear-down of the card. The PCB, for the record, is an RTX 2070 FE PCB. Same thing.

The XFX RX 590 Fatboy is a card we tore-down a few months ago, whereupon we complained about its thermal solution and noted inefficiencies in the design. These proved deficient in today’s testing, as expected, but the silicon itself – AMD’s GPU – remained a bit of a variable for us. The RX 590 GPU, ignoring XFX and its component of the review (momentarily), is potentially a stronger argument between the GTX 1060 and GTX 1070. It’s a pre-pre-overclocked RX 480 – or a pre-overclocked RX 580 – and, to AMD’s credit, it has pushed this silicon about as far is it can go.

Today, we’re benchmarking the RX 590 (the “Fatboy” model, specifically) against the GTX 1060, RX 580 overclocked, GTX 1070, and more.

CES is next week, beginning roughly on Monday (with some Sunday press conferences), and so it's next week that will really be abuzz with hardware news. That'll be true to the extent that most of our coverage will be news, not reviews (some exceptions), and so we'd encourage checking back regularly to stay updated on 2019's biggest planned product launches. Most of our news coverage will go up on the YouTube channel, but we are still working on revamping the site here to improve our ability to post news quickly and in written format.

Anyway, the past two weeks still deserve some catching-up. Of major note, NVIDIA is dealing with a class action complaint, Intel is dropping its IGP for some SKUs, and OLED gaming monitors are coming.

Today’s benchmark is a case study by the truest definition of the phrase: We are benchmarking a single sample, overweight video card to test the performance impact of its severe sag. The Gigabyte GTX 1080 Ti Xtreme was poorly received by our outlet when we reviewed it in 2017, primarily for its needlessly large size that amounted to worse thermal and acoustic performance than smaller, cheaper competitors. The card is heavy and constructed using through-bolts and complicated assortments of hardware, whereas competition achieved smaller, more effective designs that didn’t sag.

As is tradition, we put the GTX 1080 Ti Xtreme in one of our production machines alongside all of the other worst hardware we worked with, and so the 1080 Ti Xtreme was in use in a “real” system for about a year. That amount of time has allowed nature – mostly gravity – to take its course, and so the passage of time has slowly pulled the 1080 Ti Xtreme apart. Now, after a year of forced labor in our oldest rendering rig, we get to see the real side-effects of a needlessly heavy card that’s poorly reinforced internally. We’ll be testing the impact of GPU sag in today’s content.

We’re revisiting the Intel i7-7700K today, following its not-so-distant launch of January of 2017 for about $340 USD. The 7700K was shortly followed by the i7-8700K, still selling well, which later in the same year but with an additional two cores and four threads. That was a big gain, and one which stacked atop the 7700K’s already relatively high overclocking potential and regular 4.9 to 5GHz OCs. This revisit looks at how the 7700K compares to modern Coffee Lake 8000 and 9000 CPUs (like the 9700K), alongside modern Ryzen CPUs from the Zen+ generation.

For a quick reminder of 7700K specs versus “modern” CPUs – or, at least, as much more “modern” as a 1-year-later launch is – remember that the 7700K was the last of the 4C/8T parts in the i7 line, still using hyper-threading to hit 8T. The 8700K was the next launch in the family, releasing at 6C/12T and changing the lineup substantially at a similar price-point, albeit slightly higher. The 9900K was the next remarkable launch but exited the price category and became more of a low-end HEDT CPU. The 9700K is the truer follow-up to the 7700K, but oddly regresses to an 8T configuration from the 8700K’s 12T configuration, except it instead uses 8 physical cores for all 8 threads, rather than 6 physical cores. Separately, the 7700K critically operated with 8MB of total cache, as opposed to 12MB on the 9700K. The price also changed, with the 7700K closer to $340 and the 9700K at $400 to $430, depending. Even taking the $400 mark, that’s more than adjustment for inflation.

We’re revisiting the 7700K today, looking at whether buyers truly got the short straw with the subsequent and uncharacteristically rapid release of the 8700K. Note also, however, that the 8700K didn’t really properly release at end of 2017. That was more of a paper launch, with few products actually available at launch. Regardless, the feeling is the same for the 7700K buyer.

We recently reviewed (and weren’t impressed by) the Thermaltake Level 20 MT, but Thermaltake is nothing if not prolific, and there’s always a new enclosure to try. The A500 TG was released back in October under the full name “Thermaltake A500 Aluminum Tempered Glass Edition Mid-Tower Chassis,” and enters the lab today for a full thermal, acoustic, and build quality review.

Thermaltake’s A500 case primarily touts aluminum, glass, and trend-advancing features without necessarily introducing new ideas. It’s OK for a case to advance features rather than invent them, but it really must make advancements at the $250 price-point of the A500.

Intel i7-9700K Review vs. 8700K, 9900K, 2700, and More

By Published December 26, 2018 at 9:44 pm

Intel’s new i7-9700K is available for about $400 to $430, which lands it between the 9900K – priced at around $550, on a good day – and the 8700K’s $370 price-point. We got ours for $400, looking to test the new 8C/8T CPU versus the not-that-old 8700K and the hyperthreaded 9900K of similar spec. Intel made a big move away from 4C/8T CPUs and the incumbent pricing structure, with the 9700K acting as the first K-SKU i7 to lack hyperthreading in some time.

The elimination of hyperthreading primarily calls into question whether hyperthreading is even “worth it” once running on an 8C, high-frequency CPU. The trouble is that this is no longer a linear move. In years past, a move from 4C/8T to 8C/8T would be easier to discuss, but Intel has moved from a 6C/12T 8700K part of a lower price – in the $350-$370 range, on average – to an 8C/8T 9700K at a higher price. Two more physical cores come at the cost of four additional threads, which can post benefit in some thread-bound workloads – we’ll look at those in this content.

Hardware news for this week keeps things relatively lighthearted, focusing on uplifting stories about Charter (Spectrum) owing $170 million dollars in settlement fees for fraudulent marketing, RGB software being susceptible to malware, and NAND prices dropping further in 2019. Aside from that, coverage highlights the advancement of TSMC's 3nm fabrication plant (in addition to an upcoming 5nm plant) and further departure of AMD higher-ups on the Radeon group.

Show notes below the embedded video:

We already reviewed an individual NVIDIA Titan RTX over here, used first for gaming, overclocking, thermal, power, and acoustic testing. We may look at production workloads later, but that’ll wait. We’re primarily waiting for our go-to applications to add RT and Tensor Core support for 3D art. After replacing our bugged Titan RTX (the one that was clock-locked), we were able to proceed with SLI (NVLink) testing for the dual Titan RTX cards. Keep in mind that NVLink is no different from SLI when using these gaming bridges, aside from increased bandwidth, and so we still rely upon AFR and independent resources.

As a reminder, these cards really aren’t built for the way we’re testing them. You’d want a Titan RTX card as a cheaper alternative to Quadros, but with the memory capacity to handle heavy ML/DL or rendering workloads. For games, that extra (expensive) memory goes unused, thus demeaning the value of the Titan RTX cards in the face of a single 2080 Ti.

This is really just for fun, in all honesty. We’ll look at a theoretical “best” gaming GPU setup today, then talk about what you should buy instead.

Page 1 of 154

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge