As we work toward our inevitable hybrid mod on the nVidia Titan V, we must visit the usual spread of in-depth thermal, power, and clock behavior testing. The card uses a slightly modified Titan Xp cooler, with primary modifications found in the vapor chamber’s switch to copper heatfins. That’s the primary change, and not one that’s necessarily all that meaningful. Still, the card needs whatever it can get, and short of a complete cooler rework, this is about the most that can fit on the current design.

In this Titan V benchmark, we’ll be looking at the card’s power consumption during various heavy workloads, thermal behavior of the MOSFETs and GPU core, and how frequency scales with thermals and power. The frequency scaling is the most important: We’ve previously found that high-end nVidia cards leave noteworthy performance (>100MHz boost) on the table with their stock coolers, and suspect the same to remain true on this high-wattage GPU.

Our previous Titan V content includes gaming benchmarks and a tear-down, if those interest you.

The nVidia Titan V is not a gaming card, but gives us some insights as to how the Volta architecture could react to different games and engines. The point here isn’t to look at raw performance in a hundred different titles, but to think about what the performance teaches us for future cards. This will teach us about the Volta architecture; obviously, you shouldn’t be spending $3000 to use a scientific card on gaming, but that doesn’t mean we can’t learn from it. Our tear-down is already online, but now we’re focusing on Titan V overclocking and FPS benchmarks, and then we’ll move on to production, power, and thermal content.

This nVidia Titan V gaming benchmark tests the Volta architecture versus Pascal architecture across DirectX 11, DirectX 12, Vulkan, and synthetic applications. We purchased the Titan V for editorial purposes, and will be dedicating the next few days to dissecting every aspect of the card, much like we did for Vega: Frontier Edition in the summer.

NVIDIA Titan V Tear-Down & PCB: Bare GPU Look at Volta

By Published December 11, 2017 at 11:56 pm

After completing all of our gaming, power, thermal, and other benchmarks for the new nVidia Titan V graphics card, we took the unit apart for cooler, PCB, and VRM analysis. We’ll be joined by overclocker ‘Buildzoid’ in the next few days for the advanced overclocking analysis of the PCB and VRM, but have some immediate information on the assembly of the Titan V and its cooler.

The card follows the same screw pattern as all previous nVidia Founders Edition cards, including the Titan Xp and GTX 1080, primarily isolating its cooler and shroud into a single, separable unit. Build materials are all the same, assembly is the same, but the underlying GPU, HBM2, VRM, and heatsink are different.

Vega 64 may consume more power than a GTX 1080, but until now, we haven’t known if that impact is relevant to room temperature. That’s what we wanted to know, and we eventually expanded that concept to include how much a 900W+ mining machine increases room temperature, a 600W machine, and so on. We were able to effectively replace any need of a heater for the past week, and right when it started to get colder.

In this test, we’re looking at the room ambient impact of various PC builds. This helps to conceptualize the real-world impact of all those power and thermal tests you see us (and others) publish, as it puts real numbers to the user experience outside of the case. Although this concept has about a million variables and “what ifs,” we controlled to the best of our abilities, are laying-out all the major variables, and can present an academic experiment that demonstrates room temperature increase from computer equipment. All watts are basically created equal, for the purposes of this test: A 940W mining rig will output just as much heat into the room as a 940W gaming rig, or a 940W rendering machine, and so forth; as long as the power load is equal between all of these (read: constant), watts are watts, and you can extrapolate room temperature for each type of machine.

The testing originally was concepted after our Vega 56 Hybrid mod, which used power mods and other mods to push the card up towards 400W of power consumption. We wanted to test a straight Vega 56 versus GTX 1070 for room ambient impact, but shifted that up a tier (to Vega 64 and a GTX 1080) for some parts that are more likely to show a difference. After that, we shifted up to a 940W mining machine, then picked a middle-ground ~600W machine (which could also represent SLI gaming or HEDT render systems).

Ask GN: Buy or Wait for Volta?

By Published December 09, 2017 at 4:15 pm

This episode of Ask GN headlines with answering the most common question we’ve seen in the past 24 hours: Should I buy now or wait for Volta? That’ll start us off for this episode, followed by clarification of VRM quality, a history lesson on AM4 motherboards at launch and HIS existence, and silicon death from overclocking. This episode runs about 25 minutes, with each question timestamped within the video. We also have the timestamps and questions marked below, if you’d like to see when a particular topic of interest appears.

The Volta topic, we think, is among the most interesting and common for questions right now. This seems to come around for every new architecture, and our answers are generally the same. Find out more below!

The pre-Christmas holiday sales continue in the PC hardware world, with some remnant and hanger-on Black Friday and Cyber Monday deals sticking around. Right now, the Cooler Master MasterCase Pro 5 is on a significant discount, right alongside the Corsair Carbide SPEC-04 case and Logitech G900 mouse.

NVidia introduced its new Titan V GPU, which the company heralds as the “world’s most powerful GPU for the PC.” The Titan V graphics card is targeted at scientific calculations and simulation, and very clearly drops any and all “GTX” or “gaming” branding.

The Titan V hosts 21.1B transistors (perspective: the 1080 Ti has 12B, P100 has 15.3B), is capable of driving 110TFLOPS of Tensor compute, and uses the Volta GPU architecture. We are uncertain of the lower level specs, and do not presently have a block diagram for the card. We have asked for both sets of data.

AMD’s partner cards have been on hold for review for a while now. We first covered the Vega 64 Strix when we received it, which was around October 8th. The PowerColor card came in before Thanksgiving in the US, and immediately exhibited similar clock reporting and frequency bugginess with older driver revisions. AMD released driver version 17.11.4, though, which solved some of those problems – theoretically, anyway. There are still known issues with clock behavior in 17.11.4, but we wanted to test whether or not the drivers would play nice with the partner cards. For right now, our policy is this: (1) We will review the cards immediately upon consumer availability or pre-order, as that is when people will need to know if they’re any good; (2) we will review the cards when either the manufacturer declares them ready, or at a time when the cards appear to be functioning properly.

This benchmark is looking at the second option: We’re testing whether the ASUS Strix Vega 64 and PowerColor Red Devil 64 are ready for benchmarking, and looking at how they match versus the reference RX Vega 64. Theoretically, the cards should have slightly higher clocks, and therefore should perform better. Now, PowerColor has set clock targets at 1632MHz across the board, but “slightly higher clocks” doesn’t just mean clock target – it also means power budget, which board partners have control over. Either one of these, particularly in combination with superior cooling, should result in higher sustained boost clocks, which would result in higher framerates or scores.

We need some clarity on this issue, it seems.

TLDR: Some AMD RX 560 graphics cards are selling with 2 CUs disabled, resulting in 896 streaming processors to the initially advertised 1024 (64 SPs per CU). Here’s the deal: That card already exists, and it’s called an RX 460; in fact, the first two lines of our initial RX 560 review explicitly states that the driving differentiator between the 460 and 560, aside from the boosted clocks, was a pre-enabled set of 2CUs. The AMD RX 460s could already be unlocked to have 16 CUs, and the RX 560 was a card that offered that stock, rather than forcing a VBIOS flash and driver signature.

The RX 560 with 2CUs disabled, then, is not a new graphics card. It is an RX 460. We keep getting requests to test the “new” RX 560 versus the “old” RX 560 with 1024 SPs. We already did: The RX 560 review contains numbers versus the RX 460, which is (literally) an RX 560 14CU card. It is a rebrand, and that’s likely an attempt to dump stock for EOY.

Recapping our previous X299 VRM thermal coverage, we found the ASUS X299 Rampage Extreme motherboard to operate against its throttle point when pushing higher overclocks (>4GHz) on the i9-7980XE CPU. The conclusion of that content was, ultimately, that ASUS wasn’t necessarily at fault, but that we must ask whether it is reasonable to assume such a board can take the 500-600W throughput of an overclocked 7980XE CPU. EVGA has now arrived on the scene with its X299 DARK motherboard, which is seemingly the first motherboard of this year to use a fully finned VRM heatsink in a non-WS board. Our EVGA X299 DARK review will initially look at temperatures and VRM throttling on the board, and ultimately look into how much the heatsink design impacts performance.

EVGA went crazy with its X299 DARK motherboard. The craziest thing they did, evidently, was add a real heatsink to it: The heatsink has actual fins, through which a heatpipe routes toward the IO and into another large aluminum block, which is decidedly less finned. The tiny fans on top of the board look a little silly, but we also found them to be unnecessary in most use cases: Just having a real heatsink gets the board far enough, it turns out, and the brilliance of the PCH fan is that it pushes air through M.2 slots and the heatsink near the IO.

EVGA’s X299 DARK motherboard uses some brilliant designs, but also stuff that’s pretty basic. A heatsink with fins, for one, is about as obvious as it gets: More surface area means more spread of heat, and also means fans can more readily dissipate that heat. The extra four phases on the motherboard further support EVGA in dissipating heat over a wider area. EVGA individually places thermal pads on each MOSFET rather than use a large strip, which is mostly just good attention to detail; theoretically, this does improve the cooling performance, but it is not necessarily measurable. Two fans sit atop the heatsink and run upwards of 10,000RPM, with a third, larger fan located over the PCH. The PCH only consumes a few watts and has no need for active cooling, but the fan is located in such a way that (A) it’s larger, and therefore quieter and more effective, and (B) it can push air down the M.2 chamber for active cooling, then force that air into the IO shroud. A second half of the VRM heatsink (connected via heatpipe to the finned sink) is hidden under the shroud, through which the airflow from the PCH fan may flow. That’s exhausted out of the IO shield. Making a 90-degree turn does mean losing about 30% pressure, and the heatsink is far away from the PCH, but it’s enough to get heat out of the hotbox that the shroud creates.

Here's an example of what clock throttling looks like when encountering VRM temperature limits, as demonstrated in our Rampage VI Extreme content:

Page 1 of 141

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.


  VigLink badge