Hardcore overclocker "Buildzoid" just finished his VRM and PCB analysis of the Titan V, released on the GN channel moments ago. The Titan V uses a 16-phase VRM from nVidia with an interesting design, including some "mystery" in-line phases that we think are used to drop 12v. This VRM is one of the best that nVidia has built on a 'reference' card, and that makes sense, seeing as there won't be other Titan V cards from board partners. We do think the cooling solution needs work, and we've done a hybrid mod to fix that, but the VRM and PCB put us in a good place for heavier modding, including shunt modding.

Shunt modding is probably the most interesting, as that's what will give a bit more voltage headroom for overclocking, and should help trick the card's regulation into giving us more power to play with. Buildzoid talks about this mod during the video, for any willing to attempt it. We may attempt the mod on our own card.

We took our nVidia Titan V Volta card apart when we first received it, following our gaming benchmarks, and are now embarking on a mission to take some Top 10 scores in HWBot Firestrike rankings. Admittedly, we can only get close to top 10 from access – we bought the card early, and so it’s a bit of an unfair advantage – but we’re confident that the top 10 slots will soon belong entirely to the XOC community.

For now, though, we can have a moment of glory. If only a moment.

Getting there will require better cooling, as we just aren’t as good at CPU overclocking as some of the others in the top 10. To make up for our skill and LN2 deficit, we can throw more cooling at the Titan V and put up a harder fight. Liquid cooling the V is the first step, and will help us stabilize higher clocks at lower temperatures. Volta, like Pascal, increases its clock (and the stability of that clock) as the GPU core temperature decreases. Driving temperatures down under 60C will help tremendously in stability, and driving them under 40C – if possible – will be even better. We’ll see how far we get. Our Top 10 efforts will be livestreamed at around 5 or 6PM EST today, December 16, 2017.

NVidia Titan V GPU Core vs. HBM2 Overclocking

By Published December 14, 2017 at 6:49 pm

This test is another in a series of studies to learn more about nVidia’s new Volta architecture. Although Volta in its present form is not the next-generation gaming architecture, we would anticipate that key performance metrics can be stripped from Volta and used to extrapolate future behavior of nVidia’s inevitable gaming arch, even if named differently. One example would be our gaming benchmarks, where we observed significant performance uplift in games leveraging asynchronous compute pipelines and low-level APIs. Our prediction is that nVidia is moving toward a future of heavily support asynchronous compute job queuing, where the company is presently disadvantaged versus its competition; that’s not to say that nVidia doesn’t do asynchronous job queuing on Pascal (it does), but that AMD has, until now, put greater emphasis on that particular aspect of development.

This, we think, may also precipitate more developer movement toward these more advanced programming techniques. With the only two GPU vendors in the market supporting lower level APIs and asynchronous compute with greater emphasis, it would be reasonable to assume that development would follow, as would marketing development dollars.

In this testing, we’re running benchmarks on the nVidia Titan V to determine whether GPU core or memory (HBM2) overclocks have greater impact on performance. For this test, we’re only using a few key games, as selected from our gaming benchmarks:

  • Sniper Elite 4: DirectX 12, asynchronous compute-enabled, and showed significant performance uplift in Volta over Pascal. Sniper responds to GPU clock changes in drastic ways, we find. This represents our async titles.
  • Ashes of the Singularity: DirectX 12, but less responsive than Sniper. We were seeing ~10% uplift over the Titan Xp, whereas Sniper showed ~30-40% uplift. This gives us a middle-ground.
  • Destiny 2: DirectX 11, not very responsive to the Titan V in general. We saw ~4% uplift over the Titan Xp at some settings, though other settings combinations did produce greater change. This gives us a look at games that don’t necessarily care for Volta’s new async capabilities.

We are also using Firestrike Ultra and Superposition, the latter of which is also fairly responsive to the Titan’s dynamic ray-casting performance.

We are running the fan at 100% for all tests, with the power offset at 120% (max) for all tests. Clocks are changed according to their numbers in the charts.

As we work toward our inevitable hybrid mod on the nVidia Titan V, we must visit the usual spread of in-depth thermal, power, and clock behavior testing. The card uses a slightly modified Titan Xp cooler, with primary modifications found in the vapor chamber’s switch to copper heatfins. That’s the primary change, and not one that’s necessarily all that meaningful. Still, the card needs whatever it can get, and short of a complete cooler rework, this is about the most that can fit on the current design.

In this Titan V benchmark, we’ll be looking at the card’s power consumption during various heavy workloads, thermal behavior of the MOSFETs and GPU core, and how frequency scales with thermals and power. The frequency scaling is the most important: We’ve previously found that high-end nVidia cards leave noteworthy performance (>100MHz boost) on the table with their stock coolers, and suspect the same to remain true on this high-wattage GPU.

Our previous Titan V content includes gaming benchmarks and a tear-down, if those interest you.

The nVidia Titan V is not a gaming card, but gives us some insights as to how the Volta architecture could react to different games and engines. The point here isn’t to look at raw performance in a hundred different titles, but to think about what the performance teaches us for future cards. This will teach us about the Volta architecture; obviously, you shouldn’t be spending $3000 to use a scientific card on gaming, but that doesn’t mean we can’t learn from it. Our tear-down is already online, but now we’re focusing on Titan V overclocking and FPS benchmarks, and then we’ll move on to production, power, and thermal content.

This nVidia Titan V gaming benchmark tests the Volta architecture versus Pascal architecture across DirectX 11, DirectX 12, Vulkan, and synthetic applications. We purchased the Titan V for editorial purposes, and will be dedicating the next few days to dissecting every aspect of the card, much like we did for Vega: Frontier Edition in the summer.

NVIDIA Titan V Tear-Down & PCB: Bare GPU Look at Volta

By Published December 11, 2017 at 11:56 pm

After completing all of our gaming, power, thermal, and other benchmarks for the new nVidia Titan V graphics card, we took the unit apart for cooler, PCB, and VRM analysis. We’ll be joined by overclocker ‘Buildzoid’ in the next few days for the advanced overclocking analysis of the PCB and VRM, but have some immediate information on the assembly of the Titan V and its cooler.

The card follows the same screw pattern as all previous nVidia Founders Edition cards, including the Titan Xp and GTX 1080, primarily isolating its cooler and shroud into a single, separable unit. Build materials are all the same, assembly is the same, but the underlying GPU, HBM2, VRM, and heatsink are different.

Vega 64 may consume more power than a GTX 1080, but until now, we haven’t known if that impact is relevant to room temperature. That’s what we wanted to know, and we eventually expanded that concept to include how much a 900W+ mining machine increases room temperature, a 600W machine, and so on. We were able to effectively replace any need of a heater for the past week, and right when it started to get colder.

In this test, we’re looking at the room ambient impact of various PC builds. This helps to conceptualize the real-world impact of all those power and thermal tests you see us (and others) publish, as it puts real numbers to the user experience outside of the case. Although this concept has about a million variables and “what ifs,” we controlled to the best of our abilities, are laying-out all the major variables, and can present an academic experiment that demonstrates room temperature increase from computer equipment. All watts are basically created equal, for the purposes of this test: A 940W mining rig will output just as much heat into the room as a 940W gaming rig, or a 940W rendering machine, and so forth; as long as the power load is equal between all of these (read: constant), watts are watts, and you can extrapolate room temperature for each type of machine.

The testing originally was concepted after our Vega 56 Hybrid mod, which used power mods and other mods to push the card up towards 400W of power consumption. We wanted to test a straight Vega 56 versus GTX 1070 for room ambient impact, but shifted that up a tier (to Vega 64 and a GTX 1080) for some parts that are more likely to show a difference. After that, we shifted up to a 940W mining machine, then picked a middle-ground ~600W machine (which could also represent SLI gaming or HEDT render systems).

Ask GN: Buy or Wait for Volta?

By Published December 09, 2017 at 4:15 pm

This episode of Ask GN headlines with answering the most common question we’ve seen in the past 24 hours: Should I buy now or wait for Volta? That’ll start us off for this episode, followed by clarification of VRM quality, a history lesson on AM4 motherboards at launch and HIS existence, and silicon death from overclocking. This episode runs about 25 minutes, with each question timestamped within the video. We also have the timestamps and questions marked below, if you’d like to see when a particular topic of interest appears.

The Volta topic, we think, is among the most interesting and common for questions right now. This seems to come around for every new architecture, and our answers are generally the same. Find out more below!

The pre-Christmas holiday sales continue in the PC hardware world, with some remnant and hanger-on Black Friday and Cyber Monday deals sticking around. Right now, the Cooler Master MasterCase Pro 5 is on a significant discount, right alongside the Corsair Carbide SPEC-04 case and Logitech G900 mouse.

NVidia introduced its new Titan V GPU, which the company heralds as the “world’s most powerful GPU for the PC.” The Titan V graphics card is targeted at scientific calculations and simulation, and very clearly drops any and all “GTX” or “gaming” branding.

The Titan V hosts 21.1B transistors (perspective: the 1080 Ti has 12B, P100 has 15.3B), is capable of driving 110TFLOPS of Tensor compute, and uses the Volta GPU architecture. We are uncertain of the lower level specs, and do not presently have a block diagram for the card. We have asked for both sets of data.

Page 1 of 141

We moderate comments on a ~24~48 hour cycle. There will be some delay after submitting a comment.

Advertisement:

  VigLink badge